力学知识在生产和生活中的应用

时间:2022-04-06 16:34:54 物理毕业论文 我要投稿

力学知识在生产和生活中的应用

  知识是符合文明方向的,人类对物质世界以及精神世界探索的结果总和。知识,至今也没有一个统一而明确的界定。但知识的价值判断标准在于实用性,以能否让人类创造新物质,得到力量和权力等等为考量。下面是小编整理的力学知识在生产和生活中的应用相关内容。

力学知识在生产和生活中的应用

  力学知识在日常生产、生活和现代科技中应用非常广泛,主要有

  (1)体育运动方面:如跳高、跳水、体操、铅球、标枪等;

  (2)天体物理方面:如天体的运行、一些星体的发现、人类的太空活动等;

  (3)交通安全方面:汽车制动、安全距离、限速等。

  由上述题材形成的实际问题,立意新,情景活,对学生获取信息的能力、分析理解能力、空间想象能力等有较高的要求;同时对学生学科基础知识的掌握程度也是一个考验。

  解这类问题与解其他物理问题的不同之处在于,首先要把实际问题转化为物理问题。这也是这类问题使一部分学生感到困难的原因。为实现这一转化,应重视以下几点:

  1、从最基本的概念、规律和方法出发考虑问题。以实际情景立意的题目,往往不落俗套、不同于常见题型,由“题海”中总结出来的套路一般很难应用。这时从最基本的概念、规律和方法出发分析、思考才是正途。这也正是命题者的匠心所具。

  2、要分析实际现象的空间、时间特征。力学问题总与时间和空间有关,从空间上,要关注场景的细节,正确把握力的特征;从时间上,要分析实际现象如何一步一步演变,把这个演变的过程和典型的物理过程相对照,寻求转化。

  3、要提出疑问,并探求结果的意义。面对题目给出的实际现象,应能抓住现象的本质特征,找出原因、原因的原因……,抓住了这串因果链,实际上就是找到了解题思路,向物理问题的转化也就自然实现了。

  4、要画示意图,而且要选好角度。这可以大大降低思考的难度,尤其对于空间想象能力要求较高的题目。

  例题1 (天体物理研究)天文观测表明,几乎所有远处的恒星(或星系)都在以各自的速度远离我们而运动,离我们越远的星体,背离我们运动的速度(称为退行速度)越大;也就是说,宇宙在膨胀,不同星体的退行速度v和它们离我们的距离r成正比,即v=Hr,式中H为一恒量,称为哈勃常数,已由天文观测测定。为解释上述现象,有人提出一种理论,认为宇宙是从一个爆炸的大火球开始形成的,大爆炸后各星体即以各自不同的速度向外匀速运动,并设想我们就位于其中心。由上述理论和天文观测结果,可估算宇宙年龄T,其计算式为T= 。根据近期观测,哈勃常数H=3×10-2m/s﹒光年,由此估算宇宙的年龄约为 年。

  解析 本题涉及关于宇宙形成的大爆炸理论,是天体物理学研究的前沿内容,背景材料非常新颖,题中还给出了不少信息。题目描述的现象是:所有星体都在离我们而去,而且越远的速度越大。提供的一种理论是:宇宙是一个大火球爆炸形成的,爆炸后产生的星体向各个方向匀速运动。如何用该理论解释呈现的现象?可以想一想:各星体原来同在一处,现在为什么有的星体远,有的星体近?显然是由于速度大的走得远,速度小的走的近。所以距离远是由于速度大,v=Hr只是表示v与r的数量关系,并非表示速度大是由于距离远。

  对任一星体,设速度为v,现在距我们为r,则该星体运动r这一过程的时间T即为所要求的宇宙年龄,T=r/v

  将题给条件v=Hr代入上式得宇宙年龄 T=1/H

  将哈勃常数H=3×10-2m/s·光年代入上式,得T=1010年。

  点评 有不少学生遇到这类完全陌生的、很前沿的试题,对自己缺乏信心,认为这样的问题自己从来没见过,老师也从来没有讲过,不可能做出来,因而采取放弃的态度。其实只要静下心来,进入题目的情景中去,所用的物理知识却是非常简单的。这类题搞清其中的因果关系是解题的关键。

  例题2 (2002年高考全国理科综合题)(蹦床中网对运动员的作用力) 蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目,一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m高处。已知运动员与网接触的时间为1.2s,若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小(g=10m/s2)。

  解析 将运动员看作质量为m的质点,从h1高处下落,刚接触网时速度的大小v1=(向下)。

  弹跳后到达的高度为h2,刚离网时速度的大小为

  v2=(向上),速度的改变量Δv=v1+v2(向上),Δt表示运动员与网接触的时间,则Δv=aΔt。接触过程中运动员受到向上的弹力F和向下的重力mg,由牛顿第二定律得F-mg=ma。

  由以上各式解得

  F=mg+m·(+)/Δt,

  代入数值得 F=1.5×102N。

  点评 本题与小球落至地面再弹起的传统题属于同一物理模型,但将情景放在蹦床运动中,增加了问题的实践性和趣味性。本题将网对运动员的作用力当作恒力处理从而可用牛顿第二定律结合匀变速运动公式求解。实际情况作用力应是变力,则求得的是接触时间内网对运动员的平均作用力。

  例题3 (交通事故的检测) 在某市区,一辆小汽车在平直公路上向东匀速行驶,一位游客正由南向北从斑马线上横穿马路。汽车司机发现游客途经D处时,经0.7s作出反应紧急刹车,但仍将正步行至B处的游客撞伤,该汽车最终在C处停下,如图所示。为了判断汽车司机是否超速行驶以及游客横穿马路的速度是否过快,警方派一警车以法定最高速度vm=14.0m/s行驶在同一马路的同一地段,在肇事汽车的起始制动点A紧急刹车,经14.0m后停下来。在事故现场测得=17.5m,=14.0m,=2.6m.肇事汽车的刹车性能良好,问:

  (1)该肇事汽车的初速度 vA是多大?

  (2)游客横过马路的速度是多大?

  解析

  (1)警车和肇事汽车刹车后均做匀减速运动,其加速度大小,与车的质量无关,可将警车和肇事汽车做匀减速运动的加速度的大小视作相等。

  对警车,有vm2=2s;对肇事汽车,有vA2=2s′,则vm2/vA2=s/s′,即vm2/vA2=s/(+)=14.0/(17.5+14.0),故 m/s。

  (2)对肇事汽车,由v02=2s∝s得vA2/vB2=(+)/=(17.5+14.0)/14.0,故肇事汽车至出事点B的速度为 vB=vA=14.0m/s。

  肇事汽车从刹车点到出事点的时间 t1=2/(vA+vB)=1s,又司机的反应时间t0=0.7s,故游客横过马路的速度v′=/t0+t1=2.6/(0.7+1)≈1.53m/s。

  扩展:物理力学的知识点梳理

  一、力学的建立

  力学的演变以追溯到久远的年代,而物理学的其它分支,直到近几个世纪才有了较大的发展,究其原因,是人们对客观事物的认识规律所决定的。在日常生活和生产劳动中,首先接触最多的是宏观物体的运动,其中最简单。最基本的运动是物体位置的变化,这种运动称之为机械运动。由此我们注意到,力学建立的原动力就是源于人们对机械运动的研究,亦即力学的研究对象就是机械运动的客观规律及其应用。了解了这些,可以对力学的主脉络有了一条清晰的线索,就是对于物体运动规律的`研究。首先要涉及到物体在空间的位置变化和时间的关系,继而阐述张力之间的关系,然后从运动和力出发,推广并建成完整的力学理论。正是要达到上述目的,我们在研究过程中,就需要不断地引入新的物理概念和方法,此间,由“物”及“理”的思维过程和严密的逻辑揄体系,逐步得以完善和体现。明确了以上观点,可以使我们在学习及复习过程,不会生硬地接受。机械地照搬,而是自然流畅地水到渠成。

  让我们走入力学的大门看一看,它的殿堂是怎样的金碧辉煌。静力学研究了物体最简单的状态:简单的状态:静止或匀速直线运动。并且阐述了解决力学问题最基本的方法,如受力情况的分析以及处理方式;力的合成。力的分解和正交分解法。应当认识到,这些方法是贯穿于整个力学的,是我们研究机械运动规律的不可缺少的手段。运动学的主要任务是研究物体的运动,但并不涉及其运动的原因。牛顿运动定律的建立为研究力与运动的关系奠定了雄厚的基础,即动力学。至此,从理论上讲各种运动都可以解决。然而,物体的运动毕竟有复杂的问题出现,诸如碰撞。打击以及变力作用等等,这类问题根本无法求解。力学大厦的建设者们,从新的角度对物体的运动规律做了全面的。深入的讨论,揭示了力与运动之间新的关系。如力对空间的积累-功,力对时间的积累-冲量,进而获得了解决力学问题的另外两个途径-功能关系和动量关系,它们与牛顿运动定律一起,在力学中形成三足鼎立之势。

  二、力学概念的引入

  前面曾经提到过,力学的研究对象是机械运动的客观规律及其应用。为达此目的,我们需要不断地引入许多概念。以运动学部分为例,体会一下力学概念引入的动机及方法,这对力学的复习无疑是大有裨益的。

  让我们研究一下行驶在平直公路上的汽车。首先一个问题就是,怎样确定汽车在不同时刻的位置。为了能精确地确定汽车的位置,我们可将汽车看作一个点,这样,质点的概念随之引入。同时,参照物的引入则是水到渠成的,即在参照物上建立一个直线坐标,用一个带有正负号的数值,即可能精确描述汽车的位置。而后由于汽车位置要不断地发生变化,位置的改变-位移亦被引入,至于速度的引入在此就不再赘述。在学习物理的过程中,这类问题可以说比比皆是。因此,只有搞清引入某一概念的真正意图,才能对要研究的问题有深入的了解,才能说真正地掌握了一个物理概念。而在物理中,引入概念的方法,充分体现了物理学的研究手段,例如:用比值定义物理量。该方法在整个物理学中具有很典型的意义。

  把握一个概念的来龙去脉和准确定义显然是非常重要的,可以避免一些相似概念的混淆。如功与冲量。动能与动量。加速度与速度等等。所谓学习物理要“概念清楚”,就是这个含意。

  三、力学规律的运用

  物理概念的有机组合,构成了美妙的物理定律。因此,清晰的概念是掌握一个定律的重要前提。如牛顿第二定律就是由力。质量及加速度三个量构成的。在力学中重要的定律定理有:牛顿一。二。三定律;机械能守恒定律;动量守恒定律;万有引力定律;动量定理和动能定理。掌握定律并非以记忆为标准,重要的是会在实际问题中加以运用。如牛顿第二定律,从形式上看来并不复杂,然而很多同学在解决连结体问题时,却总是把握不好这三个量对研究对象之间的“对应关系”。在此可举一例。水平光滑轨道上有一小车,受一恒定水平拉力作用,若在小车上固定一个物体时,小车的加速度要减小是何原因?常见的答案显然是:合外力不变,质量变大。然而,若回答合外力变小,是不是正确的呢?这里显然是由于研究对象的选择不同而造成的不同结果。在此,研究对象的确定和公式各量的对应性问题,起着关键的作用,这也恰恰是牛顿第二定律应用时的重要环节。

  运动学规律及动力学关系在解决问题时,也有许多应当注意和思考的地方。如在匀速圆周运动中,我们似乎并未明确指出哪些公式属于运动学关系,哪些属于动力学关系,但在实际问题中却可使人困惑。例如:在一光滑水平面上用绳拴一小球做匀速圆周运动,由公式v=2nr/T可以知道,若增大速率V可以减小周期T.然而卫星绕地球做匀速圆周运动时,我们却不能用增大V的方式来改变周期T,若仅在V=2nr/Th 大做定会百思不得其解。究其原因,还是由于忽略了动力学原因,即前者与后者的最大区别是向心力不同。一个是绳子弹力,它可以以r不变时,任意提供了不同大小的拉力;而另一个是万有引力,当r一定时,其大小也就一定了。在这类问题上,最容易犯的就是片面性的错误。再比如机械能守恒和动量守恒这两条重要的力学定律,我们是否了解了守恒的条件,就可以做到灵活地运用呢?我们知道,机械能守恒的条件是“只有重力做功”,有些人看到某个问题中,重力没有做功,就立刻得出机械能不守恒的结论,如光滑水平面上的匀速直线运动。造成这类错误的原因是,只注意到了物理定律的文字表述,孰不知深刻理解其内涵才是最重要的。如动量守恒定律的内涵,是在满足了守恒条件的情况下,即系统不受外力或外力合力为零,动量只是在系统内部传递,而总动量不变。

  最后谈谈动能定理和动量定理。观察其形式可以发现,每个定理都涉及两个状态量和一个过程量,注意到这一点应是定理正确应用的关键。我们不妨将状态看作一个点,过程看作一条线,在应用时必然是“两点夹一线”,即状态量及过程量,一定要对应,这也是两个定理的相似之处,至于它们的区别,在此就不多讲了。

  由以上的讨论可以看出,对物理定律的应用,绝不能只满足于会用,而应当多方面地体会其深层的含意和适用条件中所包含的物理意义。只有这样,才能达到灵活运用物理规律解题的目的,做到居高临下,以不变应万变。

  四、逻辑推理在物理中的运用

  逻辑推理在力学中可以说俯拾皆是。严密的逻辑推理,是正确运用物理规律解决问题的必由之路。试举一例:做曲线运动的物体一定受合外力 ,其逻辑推理过程如下:曲线运动的速度方向沿轨迹的切线方向,而曲线切线方向每点是不同的,因此曲线运动的速度方向一定是不断变化的。由于的矢量,所以曲线运动必为变速运动,必然有加速度,由牛顿第二定律可知其必受合外力。当然,实际问题中似乎并非如此繁琐,然而细细地想来又的如此,只是思维过程较为迅速罢了。再举一例:合外力对物体做功不为零,则物体的动量一定发生变化,而物体的动量变化,合外力对物体不一定做功。此命题依然可用逻辑推理说明其正确性。根据动能定理,当合外力做功时,则物体的动能必然发生变化,因此速率发生变化,则动量必然变化。反之支量发生变化,动能不一定变(动量是矢量,动能是标量),则合外力不一定做功。不难看出,清晰地认识概念,牢固地掌握规律,者严密正确的逻辑推理得以完成的重要前提和充足的条件补充。同学们若多留意。多用心,定会受益非浅。

【力学知识在生产和生活中的应用】相关文章:

工程力学在汽修中的应用与对策08-07

竹子在人类生活中的应用09-15

精益生产在企业中的应用10-22

MES在企业生产管理中的应用09-04

工程应用能力在公路工程力学与结构课程中的应用08-09

CAD/CAM 技术和知识库技术在汽车开发中的应用11-14

计算机技术在工程力学教学中的应用08-09

知识管理在企业营销管理中的应用论文06-19

统计知识在煤矿企业管理中的应用09-15

浅析多媒体辅助在《工程力学》课程教学中的应用论文08-05