射频SoC nRF9E5及无线数据传输系统的实现

时间:2020-10-07 09:27:30 理工毕业论文 我要投稿

射频SoC nRF9E5及无线数据传输系统的实现

摘要:介绍最新51兼容的射频SoC(片上系统)nRF9E5的系统框架、各个组成部分、工作方式和配置方法;分析无线数据传输系统的结构和运用nRF9E5进行无线数据系统设计的通信协议;给出系统的硬件原理图和程序流程图;归纳nRF9E5在无线数据传输系统设计中的优势。

引言

nRF9E5是Nordic VLSI公司于2004年2月5日推出的系统级RF芯片,其内置nRF905 433/868/915MHz收发器、8051兼容微控制器和4输入10位80ksps A/D转换器,是真正的系统级芯片,如图1所示。内置nRF905收发器与nRF905芯片的收发器一样,可以工作于ShockBurst(自动处理前缀、地址和CRC)方式。内置电压调整模块,最大限度地抑制噪音,为系统提供1.9~3.6V的工作电压,QFN5×5mm封装,载波检测。nRF9E5符合美国通信委员会和欧洲电信标准学会的相关标准。由于nRF905功耗低,工作可靠,因此很适用于无线数据传输系统的设计。

图1

1 nRF9E5功能介绍

1.1 nRF9E5硬件

(1)微控制器

nRF9E5的片内微控制器与标准8051兼容,指令时序与标准8051稍有区别。典型的区别是:nRF9E5的片内微控制器的指令周期为4到20个指令周期。中断控制器支持5个扩展中断源:ADC中断、SPI中断、RADIO1中断、RADIO2中断和唤醒定时器中断。片内控制器还有3个与8052相同的定时器。1个和8051相同的串口,可以用定时器1和定时器2来作为异步通信的波特率产生器。此外,还扩展了2个数据指针,以方便于从XRAM区读取数据。微处理器中有256B的数据RAM和512B的ROM。上电复位或软件复位后,处理器自动执行ROM引导区中的代码。用户程序通常是在引导区的.引导下,从EEROM加载到1个4KB的RAM中,这个4KB的RAM也可作存储数据用。NRF9E5的大部分寄存器和标准8051相同,只是增加了一些特殊功能寄存器,如RADIO(P2)、ADCCON、ADCDATAH、ADCDATAL、ADCSTATIC、PWMCON、PWMDUTY、RCAP2L、RCAP2H、CKLFCON等。nRF9E5中的P0、P1和P2口寄存器地址和标准8051中的相同,都是0x80、0x90、0xA0,但功能和标准8051中的有所不同。

(2)CKLF时钟、RTC唤醒定时器、GPIO唤醒和WTD

nRF9E5内有一个低频的时钟CKLF,该时钟常开。当晶振开始工作后,CKLF频率为4Hz;晶振不工作时,CKLF是一个低功耗RC晶振器,只要VDD≥1.8V,其连续工作。RTC唤醒定时器、WTD(看门狗)和GPIO唤醒全都工作在CKLF频率,以保证芯片功耗工作时能够完成这三个功能。RTC唤醒定时器是一个24位可编程控制的递减计数器,WTD则是一个16位可编程控制递减计数器。RTC唤醒定时器和WTD的循环周期一般在300μs~80ms,默认为1ms。RTC唤醒定时器也能作GPIO的输出源,也就是说,当RTC唤醒定时器初始化时间发生溢出时,能够产生一个用作GPIO输出的程序脉冲。

(3)SPI接口和A/D转换器

SPI(串行外设接口)的接口引脚有MISO(接收EEPROM的SDO送来的数据)、SCK(给EEPROM的SCK提供时钟信号)、MOSI(送数据到EEPROM的SDI)、EECSN(给EEPROM的CSN送使能信号)。SPI口的MISO、SCK和MOSI与P1口的低3位重用,通过寄存器SPI_CTRL控制来控制功能间的撤换。SPI硬件不产生任何片选信号,可以用GPIO口来进行片选。通常,系统上电时,SPI自动和片外25320相连。当程序加载完成后,MISO(P1.2)、MOSI(P1.0)可能会用作其它用途,比如其它的SPI器件或GPIO。

nRF9E5片内有10位ADC,A/D转换参考电压可以通过软件设置在AREF和1.22V之间(内部参考电压)。A/D转换器的4个输入可通过软件进行选择,通道0~3可以把对应引脚AIN0~AIN3上的电压值分别转换为数字值,通道4用于对nRF9E5工作电压的监控。A/D转换器默认工作于10位方式,可通过软件使其工作于6位、8位或12位方式。