电力载波芯片ST7538及其应用

时间:2020-10-06 13:36:32 理工毕业论文 我要投稿

电力载波芯片ST7538及其应用

摘要:介绍一种最新推出的电力载波调制解调器芯片ST7538的基本原理,给出ST7538的主要控制电路和接口电路,讨论应用该芯片后些注意事项。

利用电力线作为通信介质的电力载波通信,具有极大的方便性、免维护性、即插即用等优点,在很多情况下是人们首选的`通信方式。ST7538是最近SGSTHOMSON公司在电力载波芯片ST7536、ST7537基础上推出的又一款半双工、同步/异步FSK(调频)调制解调器芯片。该芯片是为家庭和工业领域电力线网络通信而设计的,与ST7536和ST7537相比,主要具有以下特点:

*有8个工作频段,即:60kHz、66kHz、72kHz、76kHz、82.05kHz、86kHz、110kHz和132.5kHz;

*内部集成电力线驱动接口,并且提供电压控制和电流控制;

*内部集成 5V线性电源,可对外提供100mA电流;

*可编程通信速率高达4800bps;

*提供过零检测功能;

*具有看门狗功能;

*集成了一个片内运算放大器;

*内部含有一个具有可校验和的、24位可编程控制寄存器;

*采用TQFP44封装。

可以看出,ST7538是一款功能强大的、单芯片电力线调制解调器。

图1

1 ST7538工作原理

ST7538是采用FSK调制技术的高集成度电力载波芯片。内部集成了发送和接收数据的所有功能,通过串行通信,可以方便地与微处理器相连接。内部具有电压自动控制和电流自动控制,只要通过耦合变压器等少量外部器件即可连接到电力网中。ST7538还提供了看门狗、过零检测、运算放大器、时钟输出、超时溢出输出、 5V电源和 5V电源状态输出等,大大减少了ST7538应用电路的外围器件数量。此外,该芯片符合欧洲CENELEC(EN50065-1)和美国FCC标准。图1为ST7538内部原理框图。

1.1 发送数据

当RxTx为低时,ST7538处于发送数据状态。待发数据从TxD脚进入ST7538,时钟上升沿时被采样,并送入FSK调制器调制。调制频率由控制寄存器bit0~bit2决定,速率由控制寄存器bit3~bit4决定。调制信号经D/A变化、滤波和自动电平控制电路(ALC),再通过差分放大器输同到电力线。当打开时间溢出功能,且发送数据时间超过1s或3s时,TOUT变为高电平,同时发送状态自动转为接收状态。这样可以避免信道长时间被某一节点(ST7538)点用。

1.2 接收数据

当RxTx为高时,ST7538处于接收数据状态。信号由模拟输入端RAI脚进入ST7538,经过一个带宽±10kHz的带通滤波器,送入一个带有自动增益AGC的放大器。该滤波器可以通过控制寄存器bit23置零取消滤波功能。自动增益放大器可以根据电力线的信号强度自动调整。为提高信噪比,经过放大器的信号送入一个以通信频率为中心点、带宽为±6kHz的窄带滤波器。此信号再经过解调、滤波和锁相,变成串行数字信号,输出给出ST7538相连的微处理器。

可以通过使控制器的bit22置位,使ST7538处于高灵敏度接收状态。

1.3 工作模式选择

通过微处理器与ST7538的串口RxD、TxD和CLR/T,可以实现微控制器与ST7538的数据交换。ST7538的工作模式,由REG_DATA和RxTx的状态决定。

微处理器对电力线的访问可以采用同步方式或异步方式。异步方式只需要RxD、TxD和RxTx,无需辅助时钟信号。无载波信号时,RxD输出低电平,对于同步方式,需要CLR/T作为参考时钟,并且ST7538必须是通信发起者(Master)。