一种汽车用金卤灯的快速点亮电路

时间:2022-05-18 19:51:34 电子信息工程毕业论文 我要投稿
  • 相关推荐

一种汽车用金卤灯的快速点亮电路

摘 要:对汽车前照灯用的金属卤化物灯的性能特点和普通触发点亮电路和的致命缺点作了简要说明。介绍人一种能快速点亮金卤灯的电路,可在0.3s内使灯的光输出达到现用卤钨灯的水平,在3s~5s使灯的光输出达到其额定值。

一种汽车用金卤灯的快速点亮电路

关键词:金属卤化物灯 电子镇流器 触发器

1前言

随着人们生活及交往节奏的加快和一条条高速公路的建成,要求不断地改善汽车夜间驾驶的安全性。为此就需要有良好的前照灯视觉构造,为改善空气动力特性,就需要把前照灯的外形做成斜面流线型。现在欧、美、日等国,已用小功率金属卤化物灯代换常规的卤钨灯作为汽车前照灯的光源。因为卤钨灯的光效低,一般为15~35lm/W,显色指数为60~65。而小功率金属卤化物灯,30W的光效为85lm/W,显色指数大于70。35W的光效为67lm/W,显色指数大于75。所以,金属卤化物灯比卤钨灯体积小,光效更高、显色性更好。采用金属卤化物灯作汽车前照灯,可大大改善汽车夜间驾驶的安全性,并可显著改善汽车前部的空气动力特性,利于高速行驶。

金卤灯的玻璃壳内填充着引燃气体(氩气等)、汞及金属卤化物。当把高压电加到灯的放电极上时,在引燃气体放电之后,紧接着就产生汞弧光,由此,也就产生热量,使金属碘化物气化,在汞弧中分解为金属原子和碘原子,金属原子参与放电,并辐射出具有特殊金属光谱的强光。


包括金卤灯在内的普通高强度气体放电灯的供电点亮电路,如图1所示。

汽车中的直流电源UDC一般为12V蓄电池,经过直流电压提升电路升压,再经过DC/AC变换器变换成正弦交流电压,然后由起动触发电路产生高压脉冲触发灯管,灯点亮后,管压降低,管流增大,由限流电感进行限流。为保证加到灯管上的电压可调节,把DC电压升压器输出的电压,设计成可控制的。


虽然上述的供电点亮电路可使用DC电压来点亮金卤灯,但此种灯从起动点亮至达到规定的亮度,需要一定的时间(一般叫“起动时间”),或者在灯暂时熄灭后,再起动时(再起动时间)需较长的时间。这是因为,当该金卤灯从冷态开始起动时(把这种起动叫“冷起动”),为使灯泡内的金属卤化物气化,需要时间;当该放电灯从点亮状态被暂时熄灭一会儿后再点亮时,灯泡内的气压依点亮状态持续时间的长短,会有不同程度的升高。这就需要相应地增加触发电压的幅值;另外,当环境温度高低变化时,也会影响所需起动电压幅值的大小。这对用作汽车前照灯来说,是个致命的缺点。

本文介绍一种快速点亮汽车用金卤灯的供电电路;它克服了上述一般点亮电路的缺点,可在0.3s内使灯的光输出达到现用的卤钨灯的水平,在3s~5s内灯的光输出达到其额定值。

2快速起动点亮供电电路

2.1快速起动点亮供电电路原理

快速起动点亮供电电路原理框图可参见图2,该点亮电路由12V蓄电池供电,电源电压E经灯开关K及继电器触点Jɑ后,一路通过二极管D1到端子B,供电给后级控制电路;另一路供给DC电压提升电路②,把输入电池电压E提升后,再经DC/AC高频变换电路③,变成高频正弦交流电压供点亮金卤灯。

电路③的输出经过变压器T1的次级绕组T1-2,接到金卤灯H的电极。电容C1和变压器T1次级绕组T1-2的漏感构成限流电路。电容C1还用来检测金卤灯电流,以判断金卤灯是否接通。当灯处于未点亮状态时,灯点亮起动电路⑦发出信号给灯点亮电路④,使之产生点亮脉冲。

控制电路⑧产生控制脉冲PS,其占空比是根据电路②的输出电压和输出电流检测电阻R3上的电压信号的变化进行调整的,然后,通过栅极驱动电路⑤把该脉冲信号PS加到电路②以控制其输出电压。

控制电路的工作过程如下:

在灯点亮后,即刻又关断,此时,电路②的输出电压为零。再起动时,电路②的输出电压为高电平。从关断到再起动之间的时间间隔长短可由电路②输出端的“零电平”与“高电平”之间的时间间隔来检测。这可通过定时电路⑥来完成。电路⑥检测出此时间间隔信号,并把此信号传送给电路⑧,电路⑧输出相应的控制信号给电路②,使其输出电平改变,最终达到灯的恒功率控制。如果在灯点亮后,立即进行恒功率控制,会大大缩短灯的起动时间。

当电源E的端电压跌落到低于预定值时,就由电压降落检测电路⑨,输出一个信号给电路⑧,改用比额定功率小的控制功率来驱动金卤灯工作。

异常状态检测电路⑩从电路②的输出电压和输出电流之间的关系,检测出电路的异常状态,并把异常状态信号传送到电路①,切断电源。当电池电压恢复到等于或大于预定的电平时,灯又起动点亮。

2.2快速起动点亮电路功能介绍

(1)DC电压提升电路②

电路②是按斩波型DC/DC变换器构成的;电感L1接在电源E的正端,N沟道场效应晶体管S1接在电感L1之后,跨在电源正端和地线之间。S1是按照来自控制电路⑧与栅极驱动电路⑤所产生的驱动脉冲来进行开关工作的,当S1在控制脉冲作用下导通时,电感L1就储能,当S1截止时,电感L1就释放能量,从而提升了DC电压。

(2)DC电压提升电路②的输出电压检测电路⑾

电路⑾通过分压电阻R1和R2检测出电路②的输出电压作为采样信号送入误差运算放大器N1的同相输入端,而将预置参考电压信号V1送入N1的反相输入端进行比较,N1输出的误差信号用以控制PWM电路,调节电路②的输出电压。