碳纳米管的批量制备和应用

时间:2020-08-13 18:39:12 材料毕业论文 我要投稿

碳纳米管的批量制备和应用

碳纳米管具有奇异的化学性能,如独特的金属或半导体导电性、极高的强度、储氢能力、吸附能力和较强的微波吸收能力等,90年代初一经发现即刻受到物理、化学和科学界以及高新技术产业部门的极大重视。应用研究表明,碳纳米管可用于多种高科技领域。如用它作为增强剂和导电剂可制造性能优良的汽车防护件;用它作催化剂载体可显著提高催化剂的活性和选择性;碳纳米管较强的微波吸收性能,使它可作为吸收剂制备隐形材料、电磁屏蔽材料或暗室吸波材料等。碳纳米管被认为是一种性能优异的新型功能材料和结构材料,世界各国均在制备和应用方面投入大量的研究开发力量,期望能占领该技术领域的制高点。

    我所于1996年开始碳纳米管的制备研究,1998年得到中科院院长基金的特别支持,之后又参与了国家创新工程重大项目“碳纳米管和其它纳米材料”的研究工作。到目前已取得了一系列阶段成果,如开创了碳纳米管沸腾床和移动床催化裂解制备技术,为大规模制备碳纳米管探出了新路子;探索了碳纳米管用作催化剂载体、锂离子电池负极材料和电双层电容电极材料的可能性;首次提出将碳纳米管用作微波吸收剂,并发现了碳纳米管的宽带微波吸收特性;在制备设计尺寸的碳纳米管方面也有了积极进展。

一、 碳纳米管的批量制备

    碳纳米管要实现应用,首先必须解决碳纳米管的低大量制备问题。碳纳米管自1991年被发现以来,其制备工艺得到了广泛研究。目前,有三种主要的制备方法,即电弧放电法、激光烧蚀法和固定床催化裂解法。电弧放电法和激光烧蚀法制得的产物中,碳纳米管均与其他形态的碳产物共存,分离纯化困难,收率较低,且难以规模化。第三种固定床催化裂解法由天然气制备碳纳米管具有工艺简便、成本低、纳米管规模易控制、长度大、收率较高等优点,有重要的研究价值,但该方法中催化剂只能以薄层的形式展开,才会有好的效果,否则催化剂的利用率就低,因而产量难以提高。

    沸腾床催化裂解反应工艺气固接触良好,适合处理大量固体颗粒催化剂,用沸腾床催化裂解法代替固体床催化裂解法可大幅度提高碳纳米管的制备量。

    在沸腾床催化裂解反应器中,原料气体以一定的流速通过气体分布板,将气体分布板上活化了的催化剂“吹”成“沸腾”状态。催化剂颗粒一直处于运动之中,催化剂颗粒之间的距离要比固定床中催化剂颗粒之间的距离大得多,催化剂表面上易生长出直的碳纳米管,又因催化剂颗粒之间的相互碰撞,碳纳米管容易从催化剂表面脱出。这两种作用的结果保证了直而开口率高的碳纳米管的形成。同时沸腾床中催化剂的量可以大量增加,原料气体仍能与催化剂表面充分接触,保证了催化剂的高利用率。

    尽管沸腾床催化裂解法在碳纳米管的批量制备上有了较大突破,但与碳纳米管所有的现有制备方法一样,只能间歇操作,不利于低成本大批量碳纳米管的制备。

    要实现碳纳米管的大批量制备,必须首先解决催化剂连续投放问题和催化剂与产物及时导出的问题。这们的研究表明,通过特殊的反应装置和工艺可以实现碳纳米管的连续制备,从而达到低成本大批量制备碳纳米管的目的。

    连续制备碳纳米管是通过如下过程实现的:在封闭的移动床催化裂解反应器中,经过还原处理的纳米级催化剂通过喷嘴连续均匀地布洒到移动床上,移动床以一定的速度移动。催化剂在恒温区的停留时间可通过控制移动床的运动速度加以调节。原料气的流动方向可与床层的运动方向一致也可相反。原料气在催化剂表面裂解生成碳纳米管。当催化剂在移动床上的停留时间达到设定值时,催化剂连同在其上生成的碳纳米管从移动床上脱出进入收集器,反应尾气通过排气口排出。

    采用移动床催化裂解反应器可实现设计尺寸碳纳米管的连续制造,可望大幅度降低生产成本,为碳纳米管的'工业应用提供保证。

二、碳纳米管的应用研究

    1.碳纳米管作为微波吸收剂的研究
    由于特殊的结构和介电性质,碳纳米管(CNTs)表现出较强的宽带微波吸收性能,它同时还具有重量轻、导电性可调变、高温抗氧化性能强和稳定性好等特点,是一种有前途的理想微波吸收剂,有可能用于隐形材料、电磁屏蔽材料或暗室吸波材料。





    2.碳纳米管作为催化剂载体的研究
    纳米材料比表面积大,表面原子比率大(约占总原子数的50%),使体系的结构和晶体结构明显改变,表现出特殊的电子效应和表面效应。如气体通过碳纳米管的扩散速度为通过常规催化剂颗粒的上千倍,担载催化剂后极大提高催化剂的活性和选择性。

    碳纳米管作为纳米材料家族的新成员,其特殊的结构和表面特性、优异的储氢能力和金属及半导体导电性,使其在加氢、脱氢和择型催化等反应中具有很大的应用潜力。碳纳米管一旦在催化上获得应用,可望极大提高反应的活性和选择性,产生巨大的效益。

    3.碳纳米管作为电极材料的研究
    (1)锂离子电池负极材料。CNTs的层间距为0.34nm,略大于石墨的层间距0.335nm,这有利于Li+离子的嵌入与迁出,它特殊的圆筒状构型不仅可使Li+从外壁和内壁两方面嵌入,又可防止因溶剂化Li+离子嵌入引起的石墨层剥离而造成负极材料的损坏。CNTs掺杂石墨时可提高石墨负极的导电性,消除极化。实验表明,用CNTs作为添加剂或单独用作锂离子电池的负极材料均可显著提高负极材料的嵌Li+容量和稳定性。

    (2)电双层电容极材料。电双层电也是一种能量存储装置。除容量较小(一般为二次镍镉电池的1%)外,电双层电容的其它综合性能比二次电池要好得多,如可大电流充放电,几乎没有充放电过电压,循环寿命可达上万次,工作温度范围宽等。电双层电容在声频一视频设备、调谐器、电话机和传真机等通讯设备及各种家用电器中得到了广泛应用。

    作为电双层电容电极材料,要求材料结晶度高,导电性好,比表面积大,微孔大小集中在一定的范围内。而目前一般用多孔炭作电极材料,不但微孔分布宽(对存储能量有贡献的孔不到30%),而且结晶度低,导电性差,导致容量小。没有合适的材料是限制电双层电容在更广阔范围内使用的一个重要原因。

    碳纳米管比表面积大,结晶度高,导电性好,微孔大小可通过合成工艺加以控制,因而有可能成为一种理想的电极材料。美国Hyperion催化国际有限公司报道,以催化裂解法制备的碳纳米管(管外径约8nm)为电极材料,以38wt%H2SO4为电解液,可获得大于113F/g的电容量,比目前多孔炭电容量高出2倍多。我们以外径30nm的碳纳米管为电极材料,以PVDF为粘结剂,以1MN(C2H5)4BF4/PC为电解液构成电双层电容,测得碳纳米管电极电容量为89F/g。

    目前以碳纳米管为电极材料的电双层电容,其重量比功率已超过8kw/kg,使其有可能作为电动汽车的启动电源使用。

三、下一步工作打算

    在批量制备方面,进一步完善移动床催化裂解工艺、优化沸腾床催化裂解工艺,确定制造指定规格(管径大小、管的长短和螺旋性等)碳纳米管的催化剂组成与工艺条件,用沸腾床或移动床合成出公斤级设计尺寸的碳纳米管,进行制备碳纳米管扩大试验工艺流程的概念设计。

    在应用研究方面,集中力量研究CNTs的电磁波吸收特性、作为电极材料的电化学性能以及作为催化剂载体的特性。在作为微波吸收剂方面,重点研究碳纳米管的微观尺寸、形状以及表面状态与微波吸收性能之间的关系,为制备具有实用价值的碳纳米管微波吸收剂提供理论依据。同时研究碳纳米管中引入量对其作为微波吸收剂性能的影响,为碳纳米管微波吸收剂的实际应用奠定基础。

    在作为电极材料方面,重点研究CNTs的尺寸、表面基团、电极成型压力(CNTs孔隙率)以及电解液等对CNTs电化学性能的影响。

    对于Rh/CNTs催化NOx的分解反应,我们将深入研究CNTs对CO和烃类还原分解NOx的性能,开发三效(three-way)催化剂。

【碳纳米管的批量制备和应用】相关文章:

1.浅析功能梯度材料的制备及应用发展论文

2.碳纳米管在热管理材料中的应用研究论文

3.超临界流体技术在药学领域制备微粒中的应用

4.多孔金属材料的制备方法及应用研究论文

5.PPT批量处理技巧

6.壳聚糖纳米纤维制备在生物医学中的应用论文

7.DW批量做网页的方法

8.快换工装在多品种小批量化生产中的应用

9.批量处理图片大小